pubs.acs.org/joc

Direct Carboxylation of Arenes and Halobenzenes with CO₂ by the Combined Use of AlBr₃ and R₃SiCl

Koji Nemoto, Hiroki Yoshida, Naoki Egusa, Naoya Morohashi, and Tetsutaro Hattori*

Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan

hattori@orgsynth.che.tohoku.ac.jp

Received September 14, 2010

The Lewis acid-mediated direct carboxylation of aromatic compounds with CO₂ is efficiently promoted by the addition of silvl chlorides bearing three alkyl and/or aryl substituents in total on the silicon atom. Thus, toluene, xylenes, mesitylene, and some other alkylbenzenes are treated with a 1:1 mixture of AlBr₃ and Ph₃SiCl in neat substrates under CO₂ pressure (3.0 MPa) at room temperature, to give the corresponding carboxylic acids in 60-97% yields, based on AlBr₃. Polycyclic arenes, including naphthalene, phenanthrene, and biphenyl, are regioselectively carboxylated in 91–98% yields with the aid of 1 molar equiv of AlBr₃ and Ph₃SiCl in an appropriate solvent, chosen from benzene, chlorobenzene, and fluorobenzene. These solvents, as well as bromobenzene, resist carboxylation; however, they are also carboxylated in moderate yields when treated with a 1:5 mixture of AlBr₃ and ⁱPrSiCl at elevated temperatures. The FT-IR spectrum of a mixture prepared by exposing a suspension of AlBr₃ and Ph₃SiCl in cyclohexane to CO_2 exhibits an absorption band around 1650 cm⁻¹, assigned to the C=O stretching vibration of a species consisting of CO₂, AlBr₃, and Ph₃SiCl, which suggests that the silyl chlorides activate CO₂ in cooperation with AlBr₃. ¹H NMR analysis of unworked-up reaction mixtures reveals that the products merge as aluminum carboxylates. The mass balance concerning silicon indicates that the silvl chlorides are recycled during the reaction sequence. On the basis of these observations, a feasible mechanism is proposed for the present carboxylation.

Introduction

There has been a growing interest in the development of efficient methods for the chemical fixation of CO_2 , which is an abundant, inexpensive, nontoxic, and renewable carbon source.¹ The carboxylation of carbon nucleophiles with CO_2

DOI: 10.1021/jo101808z © 2010 American Chemical Society Published on Web 10/29/2010

is one of the most fundamental processes for CO_2 fixation. Because of the relatively low reactivity of CO_2 , the reaction generally requires strong nucleophiles, such as organolithium and Grignard reagents, which devalues this transformation with regard to functional group compatibility. However, remarkable progress has been made with the development of the transition metal-catalyzed insertion of CO_2 into less polarized metal–carbon bonds of organometallics such as allylstannanes,² organozincs,³ and organoboronic

Reviews: (a) Riduan, S. N.; Zhang, Y. Dalton Trans. 2010, 39, 3347. (b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. (c) Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 2975. (d) Louie, J. Curr. Org. Chem. 2005, 9, 605. (e) Arakawa, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen, K.; DuBois, D. L.; Eckert, J.; Fujita, E.; Gibson, D. H.; Goddard, W. A.; Goodman, D. W.; Keller, J.; Kubas, G. J.; Kung, H. H.; Lyons, J. E.; Manzer, L. E.; Marks, T. J.; Morokuma, K.; Nicholas, K. M.; Periana, R.; Que, L.; Rostrup-Nielson, J.; Sachtler, W. M. H.; Schmidt, L. D.; Sen, A.; Somorjai, G. A.; Stair, P. C.; Stults, B. R.; Tumas, W. Chem. Rev. 2001, 101, 953.

^{(2) (}a) Shi, M.; Nicholas, K. M. J. Am. Chem. Soc. **1997**, 119, 5057. (b) Johansson, R.; Wendt, O. F. Dalton Trans. **2007**, 488.

^{(3) (}a) Ochiai, H.; Jang, M.; Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2008, 10, 2681. (b) Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 7826.

esters.⁴ It is also a recent important finding that alkali metals can mediate metalation,⁵⁻¹⁰ transmetalation,¹¹ and metal insertion into carbon–halogen bonds;^{12–15} this finding provides an otherwise difficult access to functionalized organomagnesium,^{5,6,11,12} aluminum,^{7,13} zinc,^{6,8,14} copper,⁹ cadmium,¹⁰ and indium reagents,¹⁵ which can be used for the nucleophilic carboxylation, either by itself or in combination with the catalytic metal-carbon bond insertion.¹⁶ The transition metal-mediated or catalyzed hydrocarboxylation¹⁷ and alkylative carboxylation¹⁸ of unsaturated C-C bonds are also promising approaches for obtaining carboxylic acids.

On the other hand, it has been known that aromatic compounds can be directly carboxylated with CO₂ with the aid of aluminum-based Lewis acids.^{19,20} The reaction is believed to be an electrophilic fixation of CO₂, in which a Lewis acid-activated CO₂ molecule electrophilically attacks an aromatic nucleus, according to the electrophilic aromatic substitution (S_EAr) mechanism.²¹ Carboxylic acids are generally obtained in poor yields using this procedure because of the low electrophilicity of CO2 and/or side reactions caused by the strong Lewis acidity of aluminum-based compounds. Recently, the research group of Olah and Prakash has reported that the yield of carboxylic acids can be improved by the addition of aluminum powder together with AlCl₃.²¹

(6) Conway, B.; Hevia, E.; Kennedy, A. R.; Mulvey, R. E. Chem. Commun. 2007, 2864.

(7) Naka, H.; Uchiyama, M.; Matsumoto, Y.; Wheatley, A. E. H.;
McPartlin, M.; Morey, J. V.; Kondo, Y. J. Am. Chem. Soc. 2007, 129, 1921.
(8) (a) Seggio, A.; Lannou, M.-I.; Chevallier, F.; Nobuto, D.; Uchiyama,

M.; Golhen, S.; Roisnel, T.; Mongin, F. Chem.–Eur. J. 2007, 13, 9982. (b) Wunderlich, S. H.; Knochel, P. Angew. Chem., Int. Ed. 2007, 46, 7685. (c) Bresser, T.; Mosrin, M.; Monzon, G.; Knochel, P. J. Org. Chem. 2010, 75, 4686.

(9) Usui, S.; Hashimoto, Y.; Morey, J. V.; Wheatley, A. E. H.; Uchiyama,
M. J. Am. Chem. Soc. 2007, 129, 15102.
(10) L'Helgoual'ch, J.-M.; Bentabed-Ababsa, G.; Chevallier, F.;

Yonehara, M.; Uchiyama, M.; Derdour, A.; Mongin, F. Chem. Commun. 2008. 5375.

(11) Krasovskiy, A.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 3333. (12) Piller, F. M.; Appukkuttan, P.; Gavryushin, A.; Helm, M.; Knochel,
 P. Angew. Chem., Int. Ed. 2008, 47, 6802.

(13) Blümke, T.; Chen, Y.-H.; Peng, Z.; Knochel, P. Nat. Chem. 2010, 2, 313

(14) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 6040.

(15) Chen, Y.-H.; Knochel, P. Angew. Chem., Int. Ed. 2008, 47, 7648.

 (16) Kobayashi, K.; Kondo, Y. *Org. Lett.* **2009**, *11*, 2035.
 (17) (a) Saito, S.; Nakagawa, S.; Koizumi, T.; Hirayama, K.; Yamamoto, Y. J. Org. Chem. 1999, 64, 3975. (b) Aoki, M.; Kaneko, M.; Izumi, S.; Ukai, K.; Iwasawa, N. Chem. Commun. 2004, 2568. (c) Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14936. (d) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2008, 130, 15254.

(18) (a) Takimoto, M.; Shimizu, K.; Mori, M. Org. Lett. 2001, 3, 3345. (b) Shimizu, K.; Takimoto, M.; Sato, Y.; Mori, M. Org. Lett. **2005**, 7, 195. (c) Takimoto, M.; Mori, M. J. Am. Chem. Soc. **2001**, 123, 2895.

(19) (a) Friedel, C.; Crafts, J. M. Compt. Rend. 1878, 86, 1368. (b) Norris, J. F.; Wood, J. E., III J. Am. Chem. Soc. 1940, 62, 1428. (c) Gonikberg, M. G.; Gavrilova, A. E. Zh. Obshch. Khim. 1952, 22, 1388. (d) Fumasoni, S.; Collepardi, M. Ann. Chim. 1964, 54, 1122. (e) Ito, T.; Sugahara, N.; Kindaichi, Y.; Takami, Y. Nippon Kagaku Kaishi 1976, 353 (Chem. Abstr. 1976, 421589). (f) Huesler, R.; Orban, I.; Holer, M. Eur. Pat. Appl. 1996, EP 706987. (g) Suzuki, Y.; Hattori, T.; Okuzawa, T.; Miyano, S. Chem. Lett. 2002, 102.

(20) See also: Nemoto, K.; Onozawa, S.; Egusa, N.; Morohashi, N.; Hattori, T. Tetrahedron Lett. 2009, 50, 4512.

(21) Olah, G. A.; Török, B.; Joschek, J. P.; Bucsi, I.; Esteves, P. M.; Rasul, G.; Prakash, G. K. S. J. Am. Chem. Soc. 2002, 124, 11379.

7856 J. Org. Chem. Vol. 75, No. 22, 2010

This increase in the yield was attributed to the ability of metallic aluminum to scavenge HCl liberated by carboxylation to give AlCl₃. The in situ-generated AlCl₃ initiates further carboxylation, while HCl disturbs the reaction. Therefore, the aluminum powder acts in two distinct capacities for promoting carboxylation. In the same paper,²¹ the authors proposed an activation mechanism of CO₂ using AlCl₃ based on DFT calculation. Munshi and Beckman have reported that the carboxylation of toluene proceeds efficiently by incubating AlCl₃ under CO₂ pressure prior to the reaction and that this manipulation enables weaker Lewis acids, such as SnCl₄, MoCl₅, and TiCl₄, to replace AlCl₃ without appreciable loss of the product yield.²² These observations indicate that the complexation between a Lewis acid and CO₂ is important for the present carboxylation, which supports Olah's mechanism.

It is known that a trialkylsilyl group on an aromatic nucleus promotes the S_EAr reaction and that it directs the reaction to the ipso position. This is because the silvl moiety stabilizes the transition state, leading to the formation of a benzenonium intermediate by the $(p-\sigma)_{\pi}$ conjugation between the Si-C bond and developing positive charge (the β -effect).²³ We reported that trimethylsilyl-substituted benzene, toluene, and naphthalene underwent Lewis acid-mediated carboxylation more efficiently than the corresponding arenes.²⁴ During this study, we have found that the carboxylation of arenes is significantly promoted by the addition of trialkyl- or triarylsilyl chlorides. Herein, we wish to report in detail the beneficial effect of silvl chlorides in the Lewis acid-mediated carboxylation of arenes, as well as halobenzenes.²⁵

Results and Discussion

Carboxylation of Arenes and Halobenzenes. First, toluene was carboxylated under CO₂ pressure at room temperature with various silyl halides acting as promoters (Table 1). The initial CO₂ pressure was adjusted to 3.0 MPa and AlBr₃ was employed as a Lewis acid, according to our previous study.^{19g} The reaction was carried out in the neat substrate, and the yield of toluic acid was calculated on the basis of the amount of AlBr₃, assuming that 1 mol of AlBr₃ is consumed per mole of toluic acid produced (vide infra). Carboxylation carried out with 1.0 molar equiv of Me₃SiCl to AlBr₃ gave a 1:3 mixture of o- and p-toluic acid in a 21% yield (entry 2), while the yield dropped to 10% (o:p = 1:33) in the absence of Me₃SiCl (entry 1). Other trimethylsilyl halides were less effective than Me₃SiCl (entries 3 and 4). The replacement of the methyl groups of Me₃SiCl with long chains or branched alkyl groups favorably affected the yield of toluic acid; the introduction of one such substituent increased the yield to 30% (entries 10 and 11), whereas the introduction of three such substituents increased the yield to 40% (entries 14 and 15). The phenyl group was more effective, giving yields of 51%, 75%, and 94% by replacing one through three of the methyl groups, respectively (entries 19, 21, and 24). The difference in magnitude of the promoting effect of the silvl chlorides seems to originate from the difference in magnitude of the electron-donating effect

^{(4) (}a) Ukai, K.; Aoki, M.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2006, 128, 8706. (b) Takaya, J.; Tadami, S.; Ukai, K.; Iwasawa, N. Org. Lett. 2008, 10, 2697. (c) Ohishi, T.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2008, 47, 5792

⁽⁵⁾ Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 2958.

⁽²²⁾ Munshi, P.; Beckman, E. J. Ind. Eng. Chem. Res. 2009, 48, 1059.

^{(23) (}a) Dey, K.; Eaborn, C.; Walton, D. R. M. Organomet. Chem. Synth. 1971, 1, 151. (b) Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1976, 17, 1295.

⁽²⁴⁾ Hattori, T.; Suzuki, Y.; Miyano, S. *Chem. Lett.* 2003, *32*, 454.
(25) Preliminary communication: Nemoto, K.; Yoshida, H.; Suzuki, Y.;

Morohashi, N.; Hattori, T. Chem. Lett. 2006, 35, 820.

TABLE 1. Carboxylation of Toluene in the Presence of Various R_3SiX in the Neat Substrate^{*a*}

entry	R ₃ SiX	R ₃ SiX/AlBr ₃ ^b	yield $(\%)^c$	o:p ratio ^d
1	none		10	1:33
2	Me ₃ SiCl	1.0	21	1:3
3	Me ₃ SiBr	1.0	11	1:3
4	Me ₃ SiI	1.0	5	1:4
5	Me ₃ SiCl	2.0	45	1:4
6	Me ₃ SiCl	3.0	63	1:4
7	Me ₃ SiCl	4.0	73	1:5
8	Me ₃ SiCl	5.0	80	1:5
9	Me ₃ SiCl	10.0	96	1:6
10	[CH ₃ (CH ₂) ₁₇]Me ₂ SiCl	1.0	30	1:3
11	^{<i>t</i>} BuMe ₂ SiCl	1.0	27	1:3
12	^t BuMe ₂ SiCl	2.0	55	1:3
13	^t BuMe ₂ SiCl	3.0	79	1:4
14	[CH ₃ (CH ₂) ₅] ₃ SiCl	1.0	39	1:5
15	Pr ₃ SiCl	1.0	40	1:6
16	ⁱ Pr ₃ SiCl	2.0	73	1:6
17	ⁱ Pr ₃ SiCl	3.0	83	1:8
18	(Me ₃ Si) ₃ SiCl	1.0	43	1:4
19	Me ₂ PhSiCl	1.0	51	1:5
20	Me ₂ PhSiCl	2.0	84	1:5
21	MePh ₂ SiCl	1.0	75	1:5
22	MePh ₂ SiCl	2.0	93	1:5
23	^t BuPh ₂ SiCl	1.0	89	1:6
24	Ph ₃ SiCl	1.0	94	1:8
<i>a</i> -				

^{*a*}Reaction conditions: substrate (2.0 mL), CO₂ (initial pressure, 3.0 MPa), AlBr₃ (1.00 mmol), rt, 3 h. ^{*b*}Molar ratio. ^{*c*}Yield of isomer mixture based on the quantity of AlBr₃. ^{*d*}Determined by ¹H NMR analysis.

of the substituents, stabilizing a silvl cation (vide infra). Increasing the amount of silvl chlorides also improved the product yield with varying efficiency, depending on the substituents on the silicon atom. For example, toluic acid was obtained in a synthetically useful yield (80%) by employing 5.0 molar equiv of Me₃SiCl (entry 8), whereas the amount could be reduced to 3.0 molar equiv for 'BuMe₂SiCl and 'Pr₃SiCl (entries 13 and 17) and to 2.0 molar equiv for Me₂PhSiCl (entry 20) without losing the yield. There is a loose but steady tendency in regioselectivity that the bulkier the silvl chloride is, the more selectively the reaction proceeds at the para position (entries 2, 10, 11, 14, and 15; entries 19, 22, and 24). It is interesting to note that increasing the amount of the silyl chloride also improves the para selectivity (entries 2-9; entries 11-13; entries 15-17). This fact may suggest that the molar ratio of the silvl chloride to AlBr₃ affects the composition of active species generated from the silvl chloride, $AlBr_3$, and CO_2 during the reaction (vide infra).

Several other alkylbenzenes were carboxylated with the aid of Ph₃SiCl or Me₃SiCl (Table 2); these silvl chlorides were chosen as promoters, on the basis of their performance observed in the carboxylation of toluene (vide supra) and their practical usefulness. Olah et al. reported that ethylbenzene and tert-butylbenzene, on treatment with AlCl₃ and aluminum powder under CO₂ pressure at 20-40 °C, preferentially underwent disproportionation rather than carboxylation to give benzene and 1,4-dialkylbenzene, the latter of which was in situ carboxylated to give 2,5-dialkylbenzoic acid.²¹ In contrast, these compounds were successfully carboxylated under our conditions to give monoalkylbenzoic acids in good yields (entries 1 and 2). The reaction of xylenes proceeded with the regioselectivity rationalized by the S_EAr mechanism to produce a mixture of dimethylbenzoic acids (entries 3-8). In the case of *o*- and *p*-xylene, 2,4-dimethylbenzoic acid was also obtained as a minor product (entries 3, 4, 7, and 8), indicating that a portion of the substrates

isomerized to thermodynamically more stable *m*-xylene, prior to the carboxylation, under the Lewis acidic conditions.²⁶ The Lewis acid-mediated carboxylation often affords diaryl ketones, the formation of which can be rationalized by the initial carboxylation of a starting aromatic compound, followed by the Friedel-Crafts acylation between the resulting carboxylic acid and another molecule of the starting aromatic, to the corresponding diaryl ketone. In fact, the carboxylation of mesitylene with the aid of Me₃SiCl produced dimesityl ketone as a minor product, in addition to 2,4,6-trimethylbenzoic acid (entry 9). However, the use of Ph₃SiCl could suppress the formation of the ketone, giving the desired acid in an almost quantitative yield (entry 10). This means that Ph₃SiCl hastened the carboxylation so efficiently that the subsequent acylation could be ignored. Another benzene derivative, which we supposed to undergo the carboxylation, is anisole. However, the reaction of anisole carried out under the same conditions as those employed for alkylbenzenes using 1.0 molar equiv of Ph₃SiCl did not give any acidic products, recovering the substrate almost unchanged (97%).

It is difficult to successfully apply the Lewis acid-mediated carboxylation to fused aromatic compounds, because they have a marked tendency to dehydrocouple, to form polyaryls, in the presence of Friedel–Crafts catalysts (the Scholl reaction).²⁷ We reported that the carboxylation of naphthalene, carried out in benzene with the aid of AlBr₃ at 40 °C, gave naphthoic acid in a moderate yield (43%), accompanied by many neutral byproduct, consuming the entire substrate.^{19g} We have attempted the carboxylation of naphthalene using 1.0 molar equiv of Ph₃SiCl as a promoter in various solvents (Table 3, entries 1-6). Fortunately, the reaction proceeded smoothly in carbon disulfide and halobenzenes to produce naphthoic acid in good to excellent yields (entries 2, 4, and 5). On the other hand, cyclohexane and benzene were less effective as solvents (entries 1 and 3). The superiority of carbon disulfide and halobenzenes over cyclohexane seems to be largely attributable to their high solvency toward the substrate, as well as the reagents. However, another reason for the carboxylation to proceed smoothly in these solvents is derived from the fact that halobenzenes are superior to benzene, despite both being good solvents for the reactants, and that the performance of the aromatic solvents occurs in the following order: fluorobenzene > chlorobenzene > benzene. Mechanistic studies of S_EAr reactions are revealing that, in the course of the interaction between a substrate and an electrophile, they first form a π complex and it is then converted into an arenium ion.²⁸ The order of the performance of aromatic solvents may therefore be interpreted as indicating that the more the aromatic ring of a solvent is electron deficient. the more difficult it is for the solvent molecule to form a π complex and, as a result, to a lesser extent, the solvent disturbs the complexation between a substrate and an electrophile. However, an attempt to employ highly electron-deficient nitrobenzene as a solvent failed; it decomposed under the reaction conditions (entry 6). Other fused polycyclic aromatic compounds, as well as nonfused ones, were carboxylated in benzene and/or halobenzenes using 1.0 molar equiv of Ph₃SiCl as a promoter (entries 7-19). By choosing a proper solvent

⁽²⁶⁾ Olah, G. A.; Farooq, O.; Farnia, S. M. F.; Olah, J. A. J. Am. Chem. Soc. 1988, 110, 2560.

⁽²⁷⁾ Kovacic, P.; Jones, M. B. Chem. Rev. 1987, 87, 357.

⁽²⁸⁾ Smith, M. B.; March, J. March's Advanced Organic Chemistry, 6th ed.; Wiley: Hoboken, NJ, 2007; p 662.

 TABLE 2.
 Carboxylation of Alkylbenzenes in the Presence of Ph₃SiCl or Me₃SiCl in Neat Substrates^a

entry	substrate	R ₃ SiCl	R ₃ SiCl/AlBr ₃ ^b	product (distribution) ^c	yield (%) ^d
1	ethylbenzene	Ph ₃ SiCl	1.0	ethylbenzoic acid ($o:p = 1:20$)	61
2	tert-butylbenzene	Ph ₃ SiCl	1.0	<i>p-tert</i> -butylbenzoic acid	72
3	o-xylene	Me ₃ SiCl	5.0	dimethylbenzoic acid $(3,4:2,3:2,4 = 15:1:1)$	51
4	o-xylene	Ph ₃ SiCl	1.0	dimethylbenzoic acid $(3,4:2,3:2,4 = 17:2:1)$	60
5	<i>m</i> -xylene	Me ₃ SiCl	5.0	dimethylbenzoic acid $(2,4:2,6 = 1:trace)$	50
6	<i>m</i> -xylene	Ph ₃ SiCl	1.0	dimethylbenzoic acid $(2,4:2,6 = 20:1)$	67
7	<i>p</i> -xylene	Me ₃ SiCl	5.0	dimethylbenzoic acid $(2,5:2,4 = 5:1)$	53
8	<i>p</i> -xylene	Ph ₃ SiCl	1.0	dimethylbenzoic acid $(2,5:2,4 = 10:1)$	65
9	mesitylene	Me ₃ SiCl	5.0	2,4,6-trimethylbenzoic acid	87
				dimesityl ketone	6
10	mesitylene	Ph ₃ SiCl	1.0	2,4,6-trimethylbenzoic acid	97
^a Reacti	on conditions: substrate (2)	0 mL). CO ₂ (initial)	pressure 3.0 MPa) AlBr ₂	(1.00 mmol) rt 3 h ^b Molar ratio ^c Determined by ${}^{1}H$	NMR analysis

"Reaction conditions: substrate (2.0 mL), CO₂ (initial pressure, 3.0 MPa), AlBr₃ (1.00 mmol), rt, 3 h. "Molar ratio. 'Determined by 'H NMR analysis. ^dYield of isomer mixture or isolated pure product based on the quantity of AlBr₃.

TABLE 3. Carboxylation of Polycyclic Aromatic Compounds in the Presence of Ph₃SiCi in Solution^a

entry	substrate	solvent	product (distribution) ^b	yield (%) ^c
1	naphthalene	cyclohexane	naphthoic acid $(1:2 = 1:trace)$	13
2	naphthalene	CS_2	naphthoic acid $(1:2 = 12:1)$	80
3	naphthalene	benzene	naphthoic acid $(1:2 = 12:1)$	68
4	naphthalene	chlorobenzene	naphthoic acid $(1:2 = 14:1)$	87
5	naphthalene	fluorobenzene	naphthoic acid $(1:2 = 11:1)$	93
6	naphthalene	nitrobenzene	* * *	0
7	1-methylnaphthalene	benzene	4-methyl-1-naphthoic acid	97
8	1-methylnaphthalene	chlorobenzene	4-methyl-1-naphthoic acid	99
9	2-methylnaphthalene	benzene	2-methyl-1-naphthoic acid	89
10	2-methylnaphthalene	chlorobenzene	2-methyl-1-naphthoic acid	98
11	2,7-dimethylnaphthalene	chlorobenzene	2,7-dimethyl-1-naphthoic acid	95
12	phenanthrene	benzene	phenanthrene-9-carboxylic acid	73
13	phenanthrene	chlorobenzene	phenanthrene-9-carboxylic acid	89
14	phenanthrene	fluorobenzene	phenanthrene-9-carboxylic acid	91
15	biphenyl	benzene	biphenylcarboxylic acid $(4:2 = 12:1)$	68
16	biphenyl	chlorobenzene	biphenyl-4-carboxylic acid	91
17	4-methylbiphenyl	benzene	4'-methylbiphenyl-4-carboxylic acid	73
18	4-methylbiphenyl	chlorobenzene	4'-methylbiphenyl-4-carboxylic acid	97
19	1,2-diphenylethane	chlorobenzene	p-(2-phenylethyl)benzoic acid	98

^{*a*}Reaction conditions: substrate (1.00 mmol), CO₂ (initial pressure, 3.0 MPa), AlBr₃ (1.00 mmol), Ph₃SiCl (1.00 mmol), solvent (1.0 mL), rt, 3 h. ^{*b*}Determined by ¹H NMR analysis. ^{*c*}Yield of isolated pure product or isomer mixture based on the quantity of substrate.

according to the reactivity of individual substrates, the corresponding carboxylic acids could be obtained in excellent yields with high regioselectivity. It should be noted that an attempt to carboxylate ethylbenzene in chlorobenzene did not improve the yield of ethylbenzoic acid [65% (o:p = trace:1)] as compared to that achieved by the reaction carried out in the neat substrate (Table 2, entry 1). Indeed, halobenzenes are suitable solvents for dissolving solid substrates, presumably due to not disturbing the complexation between a substrate and an electrophile (vide supra), but this seems not to mean that halobenzenes positively assist a substrate to form a π complex with an electrophile. It also should be noted that the aromatic solvents employed for the carboxylation of polycyclic arenes would have been carboxylated, to some extent, under the reaction conditions, if there had been no substrate (vide infra). Much higher reactivity of the polycyclic arenes seems to have prevented the solvents from suffering from carboxylation.

It was found that chlorobenzene was carboxylated with Ph_3SiCl as a promoter, to give 4-chlorobenzoic acid, though in a poor yield (Table 4, entry 1). Increasing the reaction temperature to 80 °C improved the yield; however, it caused the formation of a small amount of benzoic acid, which was attributed to the carboxylation of Ph_3SiCl at the ipso carbon bearing the ClPh₂Si moiety (entry 2). The replacement of Ph_3SiCl with Pr_3SiCl required the use of a larger amount of the promoter and more severe reaction conditions, but this produced the

desired acid in a moderate yield without generating 2-methylpropionic acid as a byproduct (entries 3 and 4). Under similar conditions, fluorobenzene, bromobenzene, and benzene also produced the desired carboxylic acids in moderate yields (entries 6, 8, and 10). In this context, Olah et al. reported that bromobenzene was exclusively disproportionated under their carboxylation conditions with the aid of AlCl₃ and aluminum powder.²¹ Under our conditions, the disproportionation of bromobenzene was significant above 100 °C, judging from the emergence of benzoic acid, the formation of which is rationalized by the disproportionation of bromobenzene into dibromobenzene and benzene, followed by the carboxylation of the latter.

Mechanistic Considerations. In the beginning of this study, we supposed that the reaction would proceed via the silylation of an aromatic substrate with R_3SiX , along with the aid of AlX₃, according to the S_EAr mechanism, followed by the carboxylation of the resulting arylsilane with AlX₃-activated CO₂ (Scheme 1).²⁵ This was assumed because we had found that aryltrimethylsilanes were efficiently carboxylated with CO₂ in the presence of AlBr₃, and our experiments had suggested that the trimethylsilyl moiety of a starting arylsilane could migrate on the aromatic nucleus before being replaced with CO₂.^{24,29} There are only a few reports on the electrophilic silylation of aromatic compounds. Silylation

⁽²⁹⁾ Seyferth, D.; White, D. L. J. Am. Chem. Soc. 1972, 94, 3132.

 TABLE 4.
 Carboxylation of Halobenzenes and Benzene in Neat Substrates at Various Temperatures

				=		
entry	substrate	R ₃ SiCl	R ₃ SiCl/AlBr ₃ ^a	temp (°C) [time (h)]	product	yield (%) ^l
1	chlorobenzene	Ph ₃ SiCl	1.0	rt $(3)^c$	4-chlorobenzoic acid	9
2	chlorobenzene	Ph ₃ SiCl	1.0	$80(3)^d$	4-chlorobenzoic acid	$29(5)^{e}$
3	chlorobenzene	ⁱ Pr ₃ SiCl	3.0	$80(24)^d$	4-chlorobenzoic acid	31
4	chlorobenzene	ⁱ Pr ₃ SiCl	5.0	$120(48)^d$	4-chlorobenzoic acid	45
5	fluorobenzene	Ph ₃ SiCl	1.0	$rt(3)^c$	4-fluorobenzoic acid	12
6	fluorobenzene	ⁱ Pr ₃ SiCl	5.0	$80(48)^d$	4-fluorobenzoic acid	53
7	bromobenzene	Ph ₃ SiCl	1.0	rt $(3)^c$	4-bromobenzoic acid	8
8	bromobenzene	ⁱ Pr ₃ SiCl	5.0	$80(48)^d$	4-bromobenzoic acid	40
9	benzene	Ph ₃ SiCl	1.0	$rt(3)^c$	benzoic acid	11
10	benzene	ⁱ Pr ₃ SiCl	5.0	$80(48)^d$	benzoic acid	61

^{*a*}Molar ratio. ^{*b*}Isolated yield based on the quantity of AlBr₃. ^{*c*}Reaction conditions: substrate (2.0 mL), CO₂ (initial pressure, 3.0 MPa), AlBr₃ (1.00 mmol). ^{*d*}Reaction conditions: substrate (6.0 mL), CO₂ (initial pressure, 3.0 MPa), AlBr₃ (2.00 mmol). ^{*e*}Isolated yield of benzoic acid based on the quantity of AlBr₃.

SCHEME 1. Tentative Mechanism for Carboxylation via an Arylsilane Generated in Situ by a Friedel–Crafts-Type Silylation

necessitates reaction conditions under which no Brønsted acid is liberated during the reaction, because the resulting arylsilanes exhibit a marked tendency to undergo protolytic desilylation. The combinations of reagents, Me₃SiOTf-Et₃N₂³⁰ Ph₃SiNMe₂-AlCl₃³¹ and R₃SiC1-AlCl₃-Hunig's base,³² have only been employed for the silylation of highly nucleophilic ferrocene and nitrogen-containing heteroaromatics, thus far. The silvlation of arenes is more difficult³³ and no synthetically useful yield has been achieved, until the recent report by Kobayashi and co-workers;³⁴ they disclosed that 4,4'-di-tert-butyl-2-(diphenylsilyl)biphenyl, upon treatment with tritylium in the presence of 2,6-lutidine, successfully undergoes intramolecular silvlation to afford the corresponding silafluorene. We attempted the silvlation of toluene, as well as its carboxylation, using (Me₃Si)NMe₂ and AlBr₃. It was found that (Me₃Si)NMe₂ promoted carboxvlation in cooperation with AlBr₃ (eq 1), but gave no arylsilane under similar conditions in the absence of CO_2 (eq 2). A more straightforward finding that contradicts this tandem silylation-carboxylation mechanism arose from the carboxylation of triphenyl(p-tolyl)silane carried out in benzene with 1.0 molar equiv of $AlBr_3$ (eq 3); the silane produced a poor yield of toluic acid (8%), with a lesser amount of benzoic acid, despite being the expected intermediate for the carboxylation of toluene with the aid of Ph₃SiCl, which had previously exhibited the highest performance in promoting the reaction (vide supra). In contrast, toluene produced

(35) Oran, O. A., Bach, T., Frakash, G. K. S. J. Org. Chem. 1969, 34, 5170.
 (34) Furukawa, S.; Kobayashi, J.; Kawashima, T. J. Am. Chem. Soc.
 2009, 131, 14192.

toluic acid in 92% yield (o:p = 1:10) under similar conditions, with the aid of 1.0 molar equiv, each, of Ph₃SiCl and AlBr₃. Therefore, we concluded that this mechanism was not reasonable for the present carboxylation.

Another plausible mechanism by which carboxylation may take place is that a species generated from CO₂, R₃SiX, and AlX₃ directly attacks the substrate via the S_EAr mechanism (Scheme 2). Figure 1 shows the FT-IR spectrum of a mixture prepared by exposing a suspension of AlBr₃ and Ph₃SiCl in cyclohexane to 3.0 MPa of CO_2 (Figure 1a). This spectrum is compared with the spectra of a mixture prepared by a similar treatment in the absence of Ph₃SiCl (Figure 1b), a mixture prepared by treating AlBr₃ with Ph₃SiCl in cyclohexane under nitrogen (Figure 1c), and a suspension of Ph₃SiCl in cyclohexane (Figure 1d). In Figure 1a, a small but distinct absorption is observed at 1623 cm⁻¹, which can be assigned to the C=O stretching vibration (v_{C=O}) of a species generated from AlBr₃, Ph₃SiCl, and CO₂, as evidenced by the fact that the signal is absent in samples b-d in Figure 1. To date, the structures of many complexes between acyl halides and Lewis acids have been determined via mechanistic studies of Friedel-Crafts acylation. It has been reported that the $v_{C=O}$ value of a complex

IOC Article

^{(30) (}a) Frick, U.; Simchen, G. Synthesis 1984, 929. (b) Majchrzak, M. W.; Simchen, G. Tetrahedron 1986, 42, 1299.

⁽³¹⁾ Sollott, G. P.; Peterson, W. R., Jr. J. Am. Chem. Soc. 1967, 89, 5054.

 ⁽³²⁾ Olah, G. A.; Bach, T.; Prakash, G. K. S. New J. Chem. 1991, 15, 571.
 (33) Olah, G. A.; Bach, T.; Prakash, G. K. S. J. Org. Chem. 1989, 54, 3770.

SCHEME 2. Direct Carboxylation with CO_2 Activated by R_3SiX and AlX_3

in which an acyl halide coordinates to AlX₃ with the carbonyl oxygen falls within a range of 1550–1650 cm⁻¹ whereas that of a complex consisting of an acylium cation and AlX^{4–} lies within 2200–2300 cm⁻¹.^{35,36} Although the structure of the active CO₂ species seems to vary with the molar ratio of R₃SiCl to AlBr₃, as suggested in the carboxylation of toluene (vide supra), its most simple picture would therefore be a complex in which a silyl haloformate coordinates to AlX₃ (Scheme 2), judging from the $v_{C=O}$ value. In this context, ethyl chloroformate, on treatment with AlBr₃ in cyclohexane, exhibited a strong absorption at 1630 cm⁻¹, which supports this assignment. The enhanced promoting effect observed upon replacing the methyl groups of Me₃SiCl with phenyl groups or other alkyl groups (vide supra) can be explained by the notion that the more stable the silyl cation (R₃Si⁺) is, the more readily the silyl haloformate-like

FIGURE 1. FT-IR spectra measured as liquid films. Sample: (a) A mixture prepared by exposing a suspension of $AlBr_3$ and Ph_3SiCl in cyclohexane to 3.0 MPa of CO_2 , (b) a mixture prepared by a similar treatment to that for part a in the absence of Ph_3SiCl , (c) a mixture prepared by treating $AlBr_3$ with Ph_3SiCl in cyclohexane under nitrogen, and (d) a suspension of Ph_3SiCl in cyclohexane. For details, see the Experimental Section.

intermediate is formed. It should be noted that the treatment of toluene with carbon disulfide in the presence of AlBr₃ afforded,³⁷ after aqueous workup, dithio-*p*-toluic acid in a 24% yield, but the addition of Me₃SiCl did not promote the reaction (eq 4). This may indicate that silyl halides can activate CO₂, owing to silicon's strong affinity for oxygen.

According to the direct carboxylation mechanism (Scheme 2), the initial product of the carboxylation should be a silvl ester. To ascertain this point, we carried out carboxylation of toluene using Ph₃SiCl and ^{*i*}Pr₃SiCl and analyzed the reaction mixtures by ¹H NMR spectroscopy, without aqueous workup (Figure 2). It was revealed that the products obtained via the two runs were identical; the compound exhibited two doublets (2H each) at 8.15 and 7.40 ppm and one singlet (3H) at 2.52 ppm (Figure 2a,b). In addition, the spectrum was also identical with that of the species prepared by the treatment of *p*-toluic acid with AlBr₃ (Figure 2c), suggesting that it is an aluminum carboxylate.³⁸ On the other hand, the authentic sample of triisopropylsilyl p-toluate exhibited two doublets (2H each) at 7.95 and 7.23 ppm and one singlet (3H) at 2.41 ppm for the p-tolyl unit (Figure 2d). The signals of the silyl ester, on treatment with 1.0 molar equiv of AlBr₃, shifted downfield (Figure 2e), which was attributed to the coordination of the carbonyl oxygen to the aluminum center. Further, the introduction of gaseous HCl to the mixture of the silyl ester and AlBr₃ made the spectrum compatible with the aforementioned species, which we believe to be an aluminum carboxylate (Figure 2f). Therefore, it was concluded that a silvl ester initially produced by the electrophilic substitution of the active CO₂ species is decomposed in situ with the concomitantly generated superacid HAIX4 to give the corresponding carboxylic acid, which then reacts with AlX₃ to afford an aluminum carboxylate (Scheme 2). This means that the silyl halide is reproduced during the decomposition of the silvl ester. This issue was examined for Me₃SiBr and Ph₃SiCl as follows: The carboxylation of toluene was first carried out with AlBr₃ (1.00 mmol) and Me₃SiBr (5.33 mmol). After volatile materials were collected in vacuo into liquid-nitrogen-cooled tandem traps, the reaction mixture was worked up and purified by column chromatography to obtain 0.317 mmol of toluic acid. On the other hand, GC analysis of the distillate revealed that it included 5.10 mmol of Me₃SiBr. The fact that the crop of toluic acid (0.317 mmol) exceeded the amount of unrecoverable Me₃SiBr (0.23 mmol) indicates that the silvl halide is not stoichiometrically consumed during the sequence of the carboxvlation. The incomplete recovery of the silvl halide is attributed to an inevitable loss in the vacuum distillation, considering the fact that this compound is highly volatile and that no silvlated

 ^{(35) (}a) Susz, B. P.; Wuhrmann, J. J. Helv. Chim. Acta 1957, 40, 722. (b)
 Susz, B. P.; Wuhrmann, J. J. Helv. Chim. Acta 1957, 40, 971. (c) Susz, B. P.;
 Cassimatis, D. Helv. Chim. Acta 1961, 44, 395.

⁽³⁶⁾ For the X ray structures of acyl halide–AlCl₃ complexes, see: (a) Rasmussen, S. E.; Broch, N. C. *Acta Chem. Scand.* **1966**, *20*, 1351. (b) Le Carpentier, J.-M.; Weiss, R. *Acta Crystallogr.* **1972**, *B28*, 1421.

⁽³⁷⁾ For Friedel-Crafts-type dithiocarboxylation, see: (a) Jorg, H. Ber 1927, 60B, 1466. (b) Viola, H.; Scheithauer, S.; Mayer, R. Chem. Ber. 1968, 101, 3517. (c) Dieter, R. K.; Lugade, A. G. Synthesis 1988, 303.

⁽³⁸⁾ Puri, J. K.; Vats, V. K.; Miglani, A. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2001, 31, 1063.

FIGURE 2. Expanded ¹H NMR spectra (400 MHz) measured in CDCl₃. Sample: (a) A mixture prepared by the carboxylation of toluene with the aid of AlBr₃ and Ph₃SiCl, (b) a mixture prepared by a similar treatment to that for part a by using ⁱPr₃SiCl instead of Ph₃SiCl, (c) a mixture prepared by treating *p*-toluic acid with AlBr₃ in toluene, (d) authentic triisopropylsilyl *p*-toluate, (e) a mixture prepared by treating treatment to a solution of triisopropylsilyl *p*-toluate and AlBr₃ in toluene. For details, see the Experimental Section.

byproducts were detected in the residue, as well as the distillate, by ¹H NMR analysis. In the case of low volatile Ph₃SiCl, after carboxylation was carried out with AlBr₃ (1.00 mmol) and Ph₃SiCl (1.00 mmol), silicon compounds, as well as toluic acid, were isolated from the reaction mixture by extraction (see the Experimental Section), which gave Ph₃SiCl (0.319 mmol), triphenylsilanol (0.590 mmol), and toluic acid (0.940 mmol). The recovery of Ph₃SiCl again indicates that the silvl halide is not stoichiometrically consumed during the sequence of the carboxylation. In a separate experiment, it was revealed that Ph₃SiCl resisted hydrolysis under the extraction conditions, because it was recovered almost unchanged (99%). However, when mixed with an equimolar amount of AlBr₃, Ph₃SiCl was severely decomposed by the same operations to produce triphenylsilanol in 48% yield with the recovery of Ph₃SiCl (46%). It therefore seems that the silanol isolated from the reaction mixture was formed during the extraction. These observations may indicate that the silvl halides act as catalysts in the carboxylation, although 1 molar equiv or an excess amount of the reagents is required to achieve good product yields.

Conclusion

The Lewis acid-mediated carboxylation of arenes and halobenzenes was efficiently promoted by the addition of

JOC Article

silyl chlorides bearing three alkyl and/or aryl substituents on the silicon atom. Among the silyl chlorides examined, Ph₃SiCl exhibited the best performance. The fact that polycyclic arenes could be carboxylated almost quantitatively with high regioselectivity, with the aid of each 1 molar equiv of AlBr₃ and Ph₃SiCl, is of practical use. Trialkylsilyl chloride ⁱPr₃SiCl could be a good alternative to Ph₃SiCl for reactions that require heating, as it produced no acidic byproduct under heated reaction conditions. Mechanistic studies strongly suggested that the silyl chlorides promote carboxylation by reacting with CO₂ in cooperation with AlBr₃ to give haloformate-like active species coordinating to AlX₃. In addition, it was revealed that the silyl chlorides are reproduced during the sequence of carboxylation.

Experimental Section

General. Melting points were taken using a micro melting point apparatus and are uncorrected. ¹H and ¹³C NMR spectra were measured with tetramethylsilane as an internal standard and CDCl₃ as a solvent unless otherwise noted. Silica gel (63–200 μ m) was used for column chromatography and TLC. Benzene and toluene were distilled from sodium diphenyl ketyl before use. Ethylbenzene, *tert*butylbenzene, *o*-, *m*-, and *p*-xylene, mesitylene, fluorobenzene, chlorobenzene, and bromobenzene were distilled from calcium hydride and stored under nitrogen. Triphenyl(*p*-tolyl)silane was prepared as described in the literature.³⁹ AlBr₃ was well ground with a mortar under nitrogen before use. Other materials were used as purchased.

Typical Procedure for the Carboxylation (Entry 24 in Table 1). In a 50 mL autoclave equipped with a glass inner tube and a magnetic stirring bar were charged toluene (2.0 mL), powdered AlBr₃ (267 mg, 1.00 mmol), and Ph₃SiCl (294 mg, 1.00 mmol) under nitrogen, and the apparatus was purged with CO_2 by repeated pressurization and subsequent expansion, the final pressure being adjusted to 3.0 MPa. After the mixture was stirred at room temperature for 3 h, the reactor was depressurized and the mixture was quenched with 2 M HCl and extracted with diethyl ether. The organic layer was extracted with 0.5 M Na₂CO₃ and the extract was acidified with concentrated HCl to liberate the free acid, which was extracted with diethyl ether. The extract was dried over MgSO₄ and evaporated to leave a residue, which was purified by TLC with hexane-diethyl ether (1:1) as a developer to give a mixture of o- and p-toluic acid (128 mg, 94%). ¹H NMR analysis of the sample differentiated well the methyl signals of the ortho and para isomers (2.67 and 2.43 ppm, respectively), integration of which determined the o:p ratio to be 1:8. Repeated TLC with hexane-diethyl ether (2:1) as a developer allowed us to separate a small amount of each isomer from the mixture.

o-Toluic acid: as crystals, mp 103.3–104.6 °C (lit.⁴⁰ mp 103– 104 °C); IR (ATR) 2788, 1681, 1410, 1276, 1180, 923, 746, 665 cm⁻¹; ¹H NMR (400 MHz) δ 2.67 (3H, s), 7.29 (2H, m), 7.46 (1H, td, J = 7.5, 1.4 Hz), 8.09 (1H, dd, J = 8.4, 1.4 Hz); ¹³C NMR (100 MHz, DMSO- d_6) δ 21.4, 125.9, 130.4, 130.6, 131.6, 131.8, 139.2, 168.9.

*p***-Toluic acid:** as crystals, mp 183.2–184.0 °C (lit.⁴¹ mp 179–181.5 °C); IR (ATR) 2580, 1681, 1424, 1281, 1188, 981, 840, 753 cm⁻¹; ¹H NMR (400 MHz) δ 2.43 (3H, s), 7.28 (2H, d, J = 8.1 Hz), 8.01 (2H, d, J = 8.1 Hz); ¹³C NMR (100 MHz, DMSO- d_6) δ 21.2, 128.2, 129.2, 129.5, 143.1, 167.5.

^{(39) (}a) Lennon, P. J.; Mack, D. P.; Thompson, Q. E. Organometallics
1989, 8, 1121. (b) Hilt, G.; Janikowski, J. Org. Lett. 2009, 11, 773.
(40) Smith, P. A. S. J. Am. Chem. Soc. 1954, 76, 431.

⁽⁴¹⁾ Rathman, T. L.; Greenwood, T. D.; Wolfe, J. F.; Morris, G. F. J. Org. Chem. 1980, 45, 1086.

The carboxylation of other compounds was carried out by a similar procedure unless otherwise noted. See Tables 1-4 and eqs 1 and 3 for the reaction conditions and product yields, and Supporting Information for the characterization data of compounds synthesized. The following are some comments on individual experiments: The reaction mixture obtained by the carboxylation of polycyclic aromatic compounds was extracted with chloroform instead of diethyl ether (Table 3). When the reaction was carried out at elevated temperature (Table 4), a larger amount of substrate (6.0 mL) was required to prevent the reaction mixture from drying up; as our autoclave was equipped with a glass inner tube, a part of the evaporated substrate condensed outside the tube when the apparatus was heated. The carboxylation of toluene in the presence of AlBr₃ and Me₃SiNMe₂, as well as its control reactions, was carried out in the neat substrate (2.0 mL) (eq 1). The carboxylation of triphenyl(p-tolyl)silane was carried out in benzene (2.0 mL) (eq 3).

Attempted Silylation of Toluene with (Me₃Si)NMe₂. A solution of (Me₃Si)NMe₂ (d = 0.750; 156 μ L, 1.00 mmol) and AlBr₃ (267 mg, 1.00 mmol or 534 mg, 2.00 mmol) in toluene (2.0 mL) was stirred at room temperature for 3 h. The mixture was quenched with water and extracted with diethyl ether. The organic layer was washed with saturated aqueous NaHCO₃, dried over MgSO₄, and evaporated. ¹H NMR analysis of the residue revealed that it did not contain trimethyl(*p*-tolyl)silane.

Dithiocarboxylation of Toluene. A solution of carbon disulfide (d = 1.261; 604 μ L, 10.0 mmol) and AlBr₃ (267 mg, 1.00 mmol) in toluene (2.0 mL) was stirred at room temperature for 24 h. The mixture was quenched with 2 M HCl and extracted with diethyl ether. The organic layer was extracted with 1 M NaOH and the extract was acidified with concentrated HCl to liberate the free acid, which was extracted with diethyl ether. The extract was dried over MgSO₄ and evaporated to leave a residue, which was purified by TLC with hexane–diethyl ether (2:1) as a developer to give dithio-*p*-toluic acid as crystals (40.4 mg, 24%), mp 95.3–96.0 °C (lit.⁴² mp 98 °C); IR (ATR) 2630, 1599, 1317, 1265, 1178, 1030, 858, 827, 770 cm⁻¹; ¹H NMR (400 MHz) δ 2.39 (3H, s), 7.19 (2H, d, J = 8.5 Hz), 7.98 (2H, d, J = 8.5 Hz); ¹³C NMR (100 MHz) δ 21.7, 127.8, 129.4, 141.4, 144.4.

FT-IR Analysis of a Mixture Prepared by Exposing a Suspension of AlBr₃ and Ph₃SiCl in Cyclohexane to CO_2 . In a 50 mL autoclave, a suspension of powdered AlBr₃ (267 mg, 1.00 mmol) and Ph₃SiCl (294 mg, 1.00 mmol) in cyclohexane (1.0 mL) was exposed to CO_2 (3.0 MPa) at room temperature for 3 h in a similar manner to that described for the carboxylation. Referential samples were similarly prepared in the absence of Ph₃SiCl or under atmospheric pressure of nitrogen. After these reactions, a portion of each reaction mixture was sandwiched between NaCl windows under nitrogen and analyzed by FT-IR spectroscopy under air. A suspension of Ph₃SiCl in cyclohexane was also analyzed by FT-IR spectroscopy as a liquid film.

¹H NMR Analysis of Unworked-Up Reaction Mixtures Obtained by the Carboxylation of Toluene. Toluene was carboxylated according to the typical procedure in the presence of AlBr₃ (267 mg, 1.00 mmol) and either Ph₃SiCl (294 mg, 1.00 mmol) or ⁱPr₃SiCl (d =0.910; 212 μ L, 1.00 mmol) in the neat substrate (2.0 mL). On the other hand, referential samples c, e, and f in Figure 2 were prepared as follows: (c) *p*-Toluic acid (68.0 mg, 0.499 mmol) was allowed to react with AlBr₃ (267 mg, 1.00 mmol) in toluene (2.0 mL) at room temperature for 3 h under nitrogen. (e) Triisopropylsilyl *p*-toluate (292 mg, 1.00 mmol) was allowed to react with AlBr₃ (267 mg, 1.00 mmol) in toluene (2.0 mL) at room temperature for 3 h under nitrogen. (f) To a stirred solution of triisopropylsilyl *p*-toluate (292 mg, 1.00 mmol) and AlBr₃ (267 mg, 1.00 mmol) in toluene (2.0 mL) was introduced gaseous HCl generated by adding concentrated H₂SO₄ (d = 1.840; 533 μ L, 10.0 mmol) dropwise to powdered NaCl (584 mg, 10.0 mmol), and stirring was continued for 3 h. After each reaction, most of the toluene was evaporated under reduced pressure as an azeotropic mixture with hexane. The resulting residues, as well as authentic triisopropylsilyl *p*-toluate, were analyzed by ¹H NMR spectroscopy.

Determination of the Mass Balance Concerning Silicon in the Carboxylation of Toluene with the Aid of AlBr₃ and Me₃SiBr. Toluene was carboxylated according the typical procedure using AlBr₃ (267 mg, 1.00 mmol) and Me₃SiBr (816 mg, 5.33 mmol) in toluene (2.0 mL). Volatile materials were collected in vacuo in liquid-nitrogen-cooled tandem traps and the residue was worked up as before to give a mixture of *o*- and *p*-toluic acid (43.2 mg, 0.317 mmol) after purification by TLC. The ratio of ortho and para isomers was determined to be 1:6 by ¹H NMR analysis. On the other hand, the distillate was combined and subjected to GC analysis [column, Quadrex MPS-10 (0.32 mm i. d. \times 25 m); oven temperature, 40 °C; detector, FID], using ethyl acetate as an internal standard to reveal that it included Me₃SiBr (781 mg, 5.10 mmol).

Determination of the Mass Balance Concerning Silicon in the Carboxylation of Toluene with the Aid of AlBr₃ and Ph₃SiCl. Toluene was carboxylated according the typical procedure using AlBr₃ (267 mg, 1.00 mmol) and Ph₃SiCl (294 mg, 1.00 mmol) in the neat substrate (2.0 mL). The reaction mixture was quenched with 2 M HCl and extracted with diethyl ether. The organic layer was extracted first with 0.5 M Na₂CO₃ (layer A) and then with 1 M NaOH (layer B). The resulting organic layer was dried over MgSO4 and evaporated to leave a residue, which was recrystallized from diethyl ether-hexane to recover Ph₃SiCl (94.1 mg, 0.319 mmol). The sample was not contaminated with Ph₃SiBr as evidenced by the elemental analysis for halogens; it included 12.05% of chlorine (calculated value 12.02%) and no bromine. On the other hand, layer A was acidified with concentrated HCl to liberate the free acid, which was extracted with diethyl ether. The extract was dried over MgSO₄ and evaporated to leave a residue, which was purified by TLC with hexane-ethyl acetate (2:1) as a developer to give a mixture of o- and p-toluic acid (128 mg, 0.940 mmol). The ratio of ortho and para isomers was determined to be 1:8 by ¹H NMR analysis. The same treatment of layer B as that of layer A gave triphenylsilanol (163 mg, 0.590 mmol).

Acknowledgment. This study was supported in part by a Grant-in-Aid for Scientific Research on a Priority Area "Advanced Molecular Transformations of Carbon Resources" from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Preparation of triisopropylsilyl *p*-toluate, characterization data for some compounds, and ¹H and ¹³C NMR spectra of all compounds synthesized. This material is available free of charge via the Internet at http:// pubs.acs.org.

⁽⁴²⁾ Ghoshal, S.; Jain, V. K.; Dutta, D. P.; Phadnis, P. P.; Nethaji, M. J. Organomet. Chem. 2006, 691, 5838.